
Micro-stress prediction in composite laminates
with high stress gradients

P. Hutapea a, F.G. Yuan a,*, N.J. Pagano b

a Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
b AFRL/MLBM Wright-Patterson AFB, OH 45433, USA

Received 16 January 2002; received in revised form 3 December 2002

Abstract

The objective of this research is to develop a macroscopic theory, which can provide the connection between macro-

mechanics and micro-mechanics in characterizing the micro-stress of composite laminates in regions of high macro-

scopic stress gradients. The micro-polar theory, a class of higher-order elasticity theory, of composite laminate

mechanics is implemented in a well-known Pipes–Pagano free edge boundary problem. The micro-polar homogeniza-

tion method to determine the micro-polar anisotropic effective elastic moduli is presented. A displacement-based finite

element method based on micro-polar theory in anisotropic solids is developed in analyzing composite laminates. The

effects of fiber volume fraction and cell size on the normal stress along the artificial interface resulting from ply homo-

genization of the composite laminate are also investigated. The stress response based on micro-polar theory is compared

with those deduced from the micro-mechanics and classical elasticity theory. Special attention of the investigation

focuses on the stress fields near the free edge where the high macro-stress gradient occurs. The normal stresses along the

artificial interface and especially, the micro-stress along the fiber/matrix interface on the critical cell near the free edge

where the high macro-stress gradient detected are the focus of this investigation. These micro-stresses are expected to

dominate the failure initiation process in composite laminate. A micro-stress recovery scheme based on micro-polar

analysis for the prediction of interface micro-stresses in the critical cell near the free edge is found to be in very good

agreement with ‘‘exact’’ micro-stress solutions. It is demonstrated that the micro-polar theory is able to capture the

micro-stress accurately from the homogenized solutions.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Development and application of fiber reinforced composites have already witnessed phenomenal growth

over the past two decades. The prospect of controlling a wide range of material micro-structures and re-

sulting properties has also been greatly enhanced. As the use of composite materials grows to include

International Journal of Solids and Structures 40 (2003) 2215–2248

www.elsevier.com/locate/ijsolstr

* Corresponding author.

E-mail address: yuan@eos.ncsu.edu (F.G. Yuan).

0020-7683/02/$ - see front matter � 2002 Elsevier Science Ltd. All rights reserved.

doi:10.1016/S0020-7683(03)00018-0

mail to: yuan@eos.ncsu.edu


structural components, which are essential to the function and safety of engineering structures, a major

need in the design of these composite laminates is to assess acceptable stress levels under the conditions to

be experienced during service. Efficient use of the remarkable properties of fiber composites will expand

even more rapidly if the material micro-structure can further be precisely tailored to provide desired per-
formance of composite structures.

The analysis of failure in fiber composites has traditionally followed two different levels of abstraction.

The areas of investigation are known as micro-mechanics and macro-mechanics. The micro-mechanics

approach aims at the involvement of microscopic inhomogeneities in various kinds of micro-failure pro-

cesses by taking the composite micro-structure into account. The advantage of the micro-mechanics rep-

resentation is that detailed information is directly obtained about the local interaction between the

constituents and micro-failure mechanisms. The numerical modeling of exceedingly complicated geometric

detail of all fibers and matrix, however, often requires exceedingly fine grids and hence results in excessive
computer cost and capacity. The shear-lag model (Hedgepath, 1961; Hedgepath and Van Dyke, 1967;

Chou, 1992) attempts to address this issue at a manageable level. However, this is done by oversimplifying

the mechanical behavior of the constituents, which again leads to uncertain results. Even though many

refinements have been incorporated into the shear-lag models (e.g. Hikami and Chou, 1990), further

progress requires an alternative approach. It is immediately obvious that conducting a stress analysis in

realistic composite laminates with the presence of million of fibers using this approach is an almost im-

possible task beyond the computational capacity of even the latest supercomputers. Hence, the micro-

mechanical model is mainly restricted to the strength prediction at the lamina level or unidirectional
composites. The micro-mechanics analyses suffer from two main limitations. First, they are not able to

provide quantitative predictions of failure in composites. Second, they cannot be applied to problems of

engineering design importance such as failure in the presence of free edges or holes, mainly because the

interlaminar stresses have been neglected in the failure processes.

From the existing analytical approaches, it is clear that micro-mechanics approach alone will not explain

the failure process of the laminates simply because the mutual interaction between the micro-stresses and

‘‘interlaminar’’ macro-stresses in the failure process has been totally neglected. While in the macro-

mechanics approach, although the macroscopic or overall constitutive descriptions are developed from
composite micro-structure in terms of the volume fraction, the shape, and the interface conditions of the

constituents, the constitutive relations are independent of the scale of the micro-structure. Further, the

effective-modulus theory, in principle, only applies to macroscopically uniform fields. Therefore, the stress

fields near the high stress gradient regions using the classical approximation are unreliable (Pagano and

Rybicki, 1974; Rybicki and Pagano, 1975; Pagano, 1978; Fish et al., 1993). Since the details of the generally

complex, strongly heterogeneous micro-structures are not considered directly, the conventional macro-

scopic theory would inevitably involve erroneous theoretical predictions, and from which precise infor-

mation of failure in the micro-level would be difficult to elicit.
None of the currently available macroscopic theories can provide the connection between micro-

mechanics and macro-mechanics in characterizing the elastic response of composite laminates near edges

and holes. The ultimate failure of laminates, which intertwines with the micro-failure mechanisms, has to be

quantified to provide the necessary theoretical basis for design and application of composites to structures.

Furthermore, a systematic failure analysis requires a methodology at the macro-level to correctly determine

the stress distributions near the high stress gradient locations at the micro-level. In addition, there is clearly

a need for more comprehensive experimental studies of micro-structural failure criteria, with emphasis on

the requirements for applying predictive models to determine the ultimate load of the composite laminates.
Apparently, in regions of macroscopically steep stress (or strain) gradients such as free edges or holes,

the conventional anisotropic elasticity theory utilizing the effective-modulus concept in the constitutive

relations does not preserve the essential variation of the micro-stress distribution through the unit-cell at

the micro-level. Indeed, rapid change of three-dimensional stress states contradicts the underlying as-
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sumption of the macroscopically uniform state of stress from which the effective-modulus theory has been

derived. As a consequence, at regions of high stress gradient the conventional approach ceases to provide

true representation of physical reality. In order to represent the effect of the micro-stress variation through

the unit cell and properly capture the meaningful macroscopic steep stress gradient fields, one must retain
the volume average of the micro-stress distribution as the �stress� acting on the cell but also the higher-order

effects of the micro-stress distribution on the element. One of the higher-order effects of the micro-stress

distribution is the set of first moments of micro-tractions, which provides couples on the surface of the cell.

In a recent study of modeling the effective moduli of debonded interface by Yuan et al. (1997), it was found

from micro-mechanics that the stresses on the boundary of the cell lead to resultant forces and moments, as

in micro-polar (couple stress) theory. The couple stresses are conjugate to gradients of local rotation. Thus,

in the elastic couple stress theory, the couple stresses are proportional to local rotation gradients, which are

themselves proportional to differences of gradients of strain. This also results in the introduction of material
lengths into the constitutive relations for dimensional consistency. Hence, the effect of absolute size of the

micro-structure will be incorporated in the constitutive description. The presence of the length parameter,

in turn, implies that the micro-polar theory encompasses the size effects that are ignored in the classical

anisotropic elasticity theory.

The couple stress concept shown in Fig. 1 is due to Voigt (1887) and was further developed by the Cosserat

and Cosserat (1909). Following the work by Mindlin and Tiersten (1962) on linear micro-polar elasticity, a

number of stress concentration problems have been investigated (e.g. Mindlin, 1963). The effect of couple

stresses on the singular stress concentrations in elastic solids has been explored (Muki and Sternberg, 1965;
Sternberg and Muki, 1967; Sternberg, 1968; Pagano and Sih, 1968; Bogy and Sternberg, 1968; Savin and

Nemish, 1968; Atkinson and Leppington, 1977). Several pathological predictions of classical elasticity in

singular stress concentration problems are altered, mitigated, or possibly eliminated when couple stresses

are taken into account. A Cosserat continuum and the theory of elasticity with micro-structure have

Fig. 1. 2D Cartesian componets of stress and couple stress.
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been suggested as analytical models describing the dynamic behavior of composite materials (e.g. mono-

graph by Achenbach, 1973).

The research on finite element formulation of micro-polar theory is also limited due to the lack of study

in defining micro-polar shear moduli. Many researchers avoid the nonexistent of shear moduli by simpli-
fying or remodeling the micro-polar problem. For example, Wood (1988) used a complementary-based

variational principle to solve plane linear elastic couple-stress problems. The principle is analogous to that

used in a total potential energy-based Mindlin/Reissner thick plate bending analysis and as such is a

generalization of the classical analogy between plate stretching and plate bending. Parametric studies of

micro-polar theory also have been conducted. For example, Nakamura et al. (1984, 1988) developed the

total potential energy for a body composed of an anisotropic micro-polar linear elastic material and for-

mulated a displacement-type finite element model. The program is verified by computing the stress con-

centration around a hole in an isotropic micro-polar material for which an exact analytical solution exists.
Several anisotropic material cases are presented which demonstrate the dependence of the stress concen-

tration factor on the micro-polar material parameters. Very recently, Forest and Sab (1998) proposed an

alternative methodology consisting in replacing the heterogeneous medium by a generalized continuum.

Such continua involve additional degrees of freedom (Cosserat media) or higher-order gradients of the

displacement field (second grade materials). In general, they replaced a composite material with a homo-

genous generalized continuum by developing the macroscopic displacement field into a polynomial main

field and a periodic perturbation. Forest (1998) provided a method to derive micro-polar shear moduli of

composites. He modeled a cluster of nine cells and applied rotation at the center cell to simulate the de-
formation of micro-polar media.

It is clear that a higher-order continuum theory such as micro-polar theory may provide a significant

improvement in analyzing the stress behavior of composite structures near the steep stress gradient zone,

and further predicting the micro-stress near this region where the failure may initiate in this micro-scale.

Therefore, there is a need to implement micro-polar theory into the ply level in the laminate analysis.

Firstly, emphasis is placed on deriving micro-polar composite moduli and assessing the singular behavior of

stresses in the regions close to the exposed free edge. A finite element technique to derive these moduli is

presented. The effects of micro-polar theory on the normal stresses along the ‘‘artificial’’ interface that is an
artifact of ply homogenization, particularly near the high macro-stress gradient region, are also examined.

Secondly, the micro-stress along the fiber–matrix interface of the �critical� cell are of interest. �Critical� cell is
defined as the cell on the interface of matrix and composite and near the free edge of the lamina, where the

high macro-stress gradient is found due to material and/or geometric discontinuity.

2. Formulation

A class of free edge problems which involve stress intensification near the edge in the composite laminate

has been presented by Pipes and Pagano (1970), Pagano (1974a,b), Wang and Yuan (1983). In general, the

displacement field is given by

uðx; y; zÞ ¼ Uðx; yÞ
vðx; y; zÞ ¼ V ðx; yÞ
wðx; y; zÞ ¼ W ðx; yÞ þ ezz

/ðx; y; zÞ ¼ /ðx; yÞ

ð2:1Þ

where u, v and w are the x, y, z components of displacements, respectively, / is the independent rotation,

and ez is an applied uniform strain in the z-direction. Thus all the stresses are function of x and y alone. The
resulting generalized plane deformation problems in elasticity is solved by means of finite element code
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ANSYS. For the boundary value problem modeled by micro-polar elasticity, the problem is solved by use

of finite element code as discussed in Appendix A. In ANSYS, the axial strain ez is imposed on the finite

element problem by simulating it as thermal strain in z plane strain formulation:

ez ¼ azT ð2:2Þ
where az is the thermal expansion coefficient and T is the temperature rise.

Two cases of free edge boundary value problems are considered in this study. Due to the symmetry in

geometry and the lay-up, only a quarter is the laminate is modeled. The first case is a six-layered laminate
with fibrous lamina with fiber volume fraction, 30.7%. One quarter of the cross-section of a composite

consists of two fibrous layers with eight fibers and an epoxy layer is shown in Fig. 2. The size of each cell is

160 lm and the fiber diameter is 100 lm. The intention of using this configuration with eight fibers allows

the model to take every heterogeneity in a lamina into account for the numerical modeling. For each

boundary value problem, the solutions from micro-mechanics model (MM), effective modulus (homo-

genization) model (EM) and micro-polar model (MP) will be determined and then studied. The micro-stress

solutions from this micro-mechanics model will serve as reference ‘‘exact’’ solutions that will be compared

with those obtained by the EM and MP solutions. In the MM model, the fibers and matrix are recognized
explicitly in the numerical modeling; EM and MP solutions are modeled by replacing the fibrous and matrix

layers by their respective effective moduli. The derivation of effective moduli for classical elasticity and

micro-polar elasticity is presented in Section 3. The constituent moduli are in the following: ez ¼ 0:002,
Sigma 1240 (silicon carbide) fibers have E ¼ 325 GPa, m ¼ 0:15, and epoxy matrix has E ¼ 3:45 GPa,

m ¼ 0:35.
As shown in Fig. 2, the cell size is h. The elasticity boundary conditions on the center line and free edge

are given by

uð0; yÞ ¼ rxyð0; yÞ ¼ rxyð4h; yÞ ¼ rxð4h; yÞ ¼ 0 ð2:3Þ
while on the central plane and upper surface, we have

vðx; 0Þ ¼ rxyðx; 0Þ ¼ rxyðx; 3hÞ ¼ ryðx; 3hÞ ¼ 0 ð2:4Þ
In the MP model, additional boundary conditions are prescribed.

/zðx; 0Þ ¼ /zð0; yÞ ¼ lxzð4h; yÞ ¼ 0 ð2:5Þ
Note that the epoxy layer is modeled by the classical effective moduli. In this layer, /z ¼ 0. In all the cases,

particular emphasis will be placed on the cell centered at (3:5h, 1:5h) (called �critical� cell), i.e., the cell in
which the EM and MP singularities exist.

Fig. 2. Two-row composite lamina with fiber diameter: 100 lm and cell size: 160 lm� 160 lm.
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The second boundary value problem is similar to that of the first problem except that a higher fiber

volume fraction 61.4% is used. The quarter region is shown in Fig. 3. The boundary conditions are the same

as in Eqs. (2.3) and (2.4). The same constituent moduli are also used in the second problem.

An ANSYS and finite element code are developed to analyze the stresses and displacements for MM,
EM and MP models. Eight-node isoparametric elements are used in these modeling. For modeling MM,

EM and MP models under axial strain ez, the loading is simulated as a thermoelastic problem with thermal

expansion coefficients, a1 ¼ a2 ¼ 0 and a3 ¼ ez under unit temperature rise. The finite element procedure of

the micro-polar theory for this boundary value problem is described in Appendix A.

3. Prediction of micro-polar composite moduli

A finite element approach to calculate micro-polar moduli in orthotropic solids is presented. A square

fibrous unit cell is employed in the analysis. Since the unit cell possesses a center of symmetry, there will be

no coupling between the overall micro-polar deformation and curvatures. The derivation of the moduli in

this study contains three parts. Firstly, effective elastic moduli deduced from the classical homogenized

scheme are obtained based on the representative volume element (RVE) concept as presented by Yuan et al.

(1997). Secondly, a cluster of cells suggested by Forest (1998) is used together with traction continuity and

displacement continuity conditions along the boundary of the center cell for determining the micro-polar

shear moduli. Finally, determination of bending moduli of the unit cell from a long strip of periodic cells
using a least squares method or finite element method is proposed. The finite element method by means of

ANSYS software package is utilized.

For an orthotropic micro-polar solid under generalized plane deformation, constitutive equations for

this class of problems are expressed as

�rrxx

�rryy

�rrzz

�rrxy

�rryx

�llxz

�llyz

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

¼

C11 C12 C13 0 0 0 0

C12 C22 C23 0 0 0 0

C13 C23 C33 0 0 0 0
0 0 0 G11 G12 0 0

0 0 0 G12 G22 0 0

0 0 0 0 0 B11 B12

0 0 0 0 0 B12 B22

2
666666664

3
777777775

�eexx
�eeyy
�eezz
�eexy
�eeyx
�jjxz

�jjyz

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

ð3:1Þ

Fig. 3. Two-row composite lamina with fiber diameter: 141.42 lm and cell size: 160 lm� 160 lm.
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The strain–displacement relations are

�eexx ¼
o�uu
ox

; �eeyy ¼
o�vv
oy

; �eezz ¼
o�ww
oz

; �eexy ¼
o�vv
ox

� �//z; �eeyx ¼
o�uu
ox

þ �//z

where the bar on the stresses and strains denote the averaged quantities, /z is the micro-polar rotation, lxz

and lyz are couple stresses, and jxz and jyz are the curvatures.

The classical orthotropic constants, Cij ði; j ¼ 1; 2; 3Þ, are deduced from three extension and one shear

boundary value problem with periodic boundary conditions to obtain shear moduli. In addition to the

shear test, a cluster of nine composite cells is employed to simulate the micro-polar shear force that is

activated by a rotation of a center cell. By applying this method, the anti-symmetric shear stress condition

will be automatically satisfied. Using shear and rotation tests, the micro-polar shear moduli, Gij ði; j ¼ 1; 2Þ,
are determined. Since there is no RVE in the micro-polar theory, bending moduli, Bij ði; j ¼ 1; 2Þ, are
approximated by applying bending deformation to a long strip of unit cells. The Young�s modulus,

Poisson�s ratios, in-plane and longitudinal shear moduli of the composite are determined by the elastic

properties of the constituents and internal geometry of the RVE (Yuan et al., 1997). Only the derivation of

micro-polar shear and bending moduli are presented in this paper.

3.1. Shear test––in-plane composite shear modulus

For the composite under shear, straight cell boundaries may not remain straight after the composite has

been deformed. Since the boundary displacements and traction on any cells must be compatible with those

on the neighboring cells, for the finite element modeling, constraints are imposed on the displacements at

the edges x ¼ constant and y ¼ constant of the cell boundary where the displacements are not necessarily

linear. Applying the boundary conditions into a quarter cell model as derived in Yuan et al. (1997):

x ¼ 0; vð0; yÞ ¼ rxð0; yÞ ¼ 0

x ¼ a; vða; yÞ ¼ 1

2
ac�xy ; rxð0; yÞ ¼ 0

y ¼ 0; uðx; 0Þ ¼ ryðx; 0Þ ¼ 0

y ¼ b; uðx; bÞ ¼ 1

2
bc�xy ; ryðx; bÞ ¼ 0

ð3:2Þ

From the constitutive equation, we can express the effective shear constitutive equation in the following

way

�rrxy

�rryx

� �
¼ G11 G12

G12 G22

� �
�eexy
�eeyx

� �
ð3:3Þ

�eexy
�eeyx

� �
¼ 1

G11G22 � G2
12

G22 �G12

�G12 G11

� �
�rrxy

�rryx

� �
ð3:4Þ

Adding the two shear strains in Eq. (3.4) yields

�eexy þ �eeyx ¼
o�vv
ox

þ o�uu
oy

¼ ðG22 � G12Þ�rrxy þ ð�G12 þ G11Þ�rryx

G11G22 � G2
12

ð3:5Þ

For classical elasticity problem, the shear stress is symmetric, �rrxy ¼ �rryx. Therefore, Eq. (3.5) can be sim-

plified as follows.
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�rrxy ¼
G2

12 � G11G22

2G12 � G11 � G22

�ccxy ð3:6Þ

The composite in-plane shear modulus is defined as:

�rrxy ¼ G�
12�ccxy ð3:7Þ

The average of the in-plane shear stress in the RVE:

�rrxy ¼
1

b

Z b

0

rxyða; yÞdy ð3:8Þ

The average of the in-plane shear strain is derived in Yuan et al. (1997):

�ccxy ¼ c�xy ð3:9Þ

Denote the shear modulus of elasticity, G�
12, as follows.

G�
12 ¼

G2
12 � G11G22

2G12 � G11 � G22

ð3:10Þ

Applying Eqs. (3.3) and (3.6), G�
12 can be determined. It also can be proven that �rrx ¼ �rry ¼ �rrz ¼ 0.

Therefore, shear coupling coefficients are identically zero, i.e.,

C16 ¼ C26 ¼ C36 ¼ 0 ð3:11Þ

3.2. Center-rotation test––rotation modulus

In micro-polar theory, the translational and rotational degrees of freedom are independent of each other.

The translation describes the displacement of the center of the unit cell whereas the global rotation of

each unit cell is accounted for by the additional degrees of freedom. The neighboring cells will oppose resis-
tance to inner rotation. We consider the anti-symmetric part of strain in micro-polar theory is introduced

by a mechanism of cell rotation, which is not considered in the conventional theory of elasticity. Non-

symmetrical shear stress for the cell results from the rotation of the center cell, which activates shear forces

transmitted through cell contacts. Thus, for the determination of moduli G11, G22 and G12, rotation can be

considered in addition to the shear test. The center of the cells is fixed and a rigid rotation is prescribed at

the boundary of the center cell. This rotation corresponds to a non-vanishing relative rotation of the micro-

structure (anti-symmetric strains). The finite element computation provides the reaction forces on each

sides of the center cell that represent the resistance of the material to inner rotation.
The displacement boundary conditions for the center cell are given by:

uða; yÞ ¼ uð�a; yÞ
vða; yÞ ¼ vð�a; yÞ þ ac�

uðx; bÞ ¼ uðx;�bÞ � bc�

vðx; bÞ ¼ vðx;�bÞ

ð3:12Þ

For the remaining eight cells, the displacement is fixed at their centers (i.e., u ¼ v ¼ 0). Due to the symmet-

ric geometry of the cell under constraint Eq. (3.12), we have

exðx; yÞ ¼ �exðx;�yÞ
eyðx; yÞ ¼ �eyðx;�yÞ
cxyðx; yÞ ¼ cxyðx;�yÞ

ð3:13Þ
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Integrating the strain–displacement relation in conjunction with Eq. (3.13) and then applying Eq. (3.12)

give

uðx; 0Þ ¼ vð0; yÞ ¼ 0 ð3:14Þ

Thus, there is no translation at the center of the center cell.

Following Yuan et al. (1997), we can prove that

�rrx ¼ �rry ¼ �rrz ¼ 0

�eex ¼ �eey ¼ �eez ¼ 0
ð3:15Þ

It can be readily shown that

�eeðxyÞ ¼ �ccxy ¼
�eexy þ �eeyx

2
¼ 1

2a

Z a

�a

ovðx; bÞ
ox

dxþ 1

2b

Z b

�b

ouða; yÞ
oy

dy ¼ 0 ð3:16Þ

The average local rotation for the center cell relative to the surrounding cells is

�//z ¼
1

4ab

Z
A

1

2

ov
ox

�
� ou

oy

�
dxdy ¼ c�

2
ð3:17Þ

Rigid body rotation, xz, can be estimated from rotation of the rigid Cartesian axes located at the center of

the center cell.

xz ¼
1

2

ov
ox

�
� ou

oy

�����
x¼0
y¼0

ð3:18Þ

By taking advantage of Eq. (3.14), /z can be readily calculated from either one of the axis. The anti-
symmetric shear strain can be obtained:

�ee½xy
 ¼
1

2
ð�eexy � �eeyxÞ ¼ xz � �//z ð3:19Þ

For a square fibrous cell with the symmetry about x and y the axes, G11 ¼ G22. From Eq. (3.3) with the help

of Eq. (3.16), we obtain

�rrxy þ �rryx ¼ 2�rrðxyÞ ¼ 0 ð3:20Þ

Eq. (3.3) further leads to

�rr½xy
 ¼
1

2
ð�rrxy � �rryxÞ ¼ ðG11 � G12Þ

1

2
ð�eexy

�
� �eeyxÞ

�
¼ ðG11 � G12Þ�ee½xy
 ð3:21Þ

and Eq. (3.6) gives:

G�
12 ¼ G11 þ G12 ð3:22Þ

The physical meaning of elasticity and micro-rotations with regards to the anti-symmetric shear stress is

explained more clearly in Fig. 4. To simulate the micro-polar deformation, Eq. (3.12) is applied to the

center cell. For the cluster of cells with fixed centers, the prescribed rigid body rotation activates shear

forces that cause the anti-symmetric part of shear stresses for the center cell. The reactive shear forces are

extracted from each side of the cell to calculate the shear stress.

The value of �rr½xy
 can be obtained from the boundaries of the center cell shown in Fig. 4. Then, utilizing
Eqs. (3.19), (3.21) and (3.22), the micro-polar shear moduli can be obtained.The resulting deformation is

shown in Fig. 5.
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Under the displacement boundary conditions, Eq. (3.12), the strain energy density can be expressed by

U ¼ 1

2
�rrxy�eexy þ

1

2
�rryx�eeyx ¼ �rrðxyÞ�eeðxyÞ þ �rr½xy
�ee½xy
 ¼ �rrðxyÞ�eeðxyÞ þ �rr½xy
ðxz � �//zÞ ð3:23Þ

The first term in Eq. (3.23) is the energy produced by the symmetric shear stress undergoing shear dis-

tortion; the second term represents the energy by the anti-symmetric shear stress �rr½xy
 undergoing a de-

formation due to the relative rotation (xz � �//z).

Using (3.16) and (3.20), Eq. (3.23) can be rewritten as

U ¼ 1

2
ðrxy � ryxÞðxz � �//zÞ ð3:24Þ

Fig. 5. Nine-cell model of fibrous cells for calculating rotational modulus using micro-polar theory.

Fig. 4. Kinematics of macro- and micro-rotations in micro-polar solids.

2224 P. Hutapea et al. / International Journal of Solids and Structures 40 (2003) 2215–2248



3.3. Bending deformation––modulus of curvature

Consider a long strip of unit cells in the x-direction. The displacement compatibility equations for the

cells under bending deformation on the surfaces x ¼ �a are:

uða; yÞ ¼ uð�a; yÞ � 2aj�
xzy

vða; yÞ ¼ vð�a; yÞ
uðx; bÞ ¼ uðx;�bÞ � 2bj�

xzx

vðx; bÞ ¼ vðx;�bÞ

ð3:25Þ

The traction continuity conditions among neighboring horizontal cells regardless of the loading and the

traction-free condition along y ¼ �b are given as

rxða; yÞ ¼ rxð�a; yÞ
rxyða; yÞ ¼ rxyð�a; yÞ
ryðx; bÞ ¼ ryðx;�bÞ ¼ 0

rxyðx; bÞ ¼ rxyðx;�bÞ ¼ 0

ð3:26Þ

First considering the anti-symmetry about the x-axis

exðx; yÞ ¼ �exðx;�yÞ
eyðx; yÞ ¼ �eyðx;�yÞ
cxyðx; yÞ ¼ cxyðx;�yÞ

ð3:27Þ

Integrating Eq. (3.27) and imposing the fixed displacements and rotation at the center of the cell element,

we obtain

uðx; yÞ ¼ �uðx;�yÞ
vðx; yÞ ¼ vðx;�yÞ

ð3:28Þ

Thus

uðx; 0Þ ¼ 0 ð3:29Þ
Using (3.28a), Eq. (3.25c) reduces to

uðx; bÞ ¼ �bj�
xzx ð3:30Þ

From Eq. (3.27),

rxðx; yÞ ¼ �rxðx;�yÞ
ryðx; yÞ ¼ �ryðx;�yÞ
rxyðx; yÞ ¼ rxyðx;�yÞ

ð3:31Þ

Thus,

rxðx; 0Þ ¼ 0; ryðx; 0Þ ¼ 0 ð3:32Þ
Consequently, the cells can be modeled by a half of the region

y ¼ 0

uðx; 0Þ ¼ 0

rxðx; 0Þ ¼ 0

ryðx; 0Þ ¼ 0

8<
: ; y ¼ b

uðx; bÞ ¼ �bj�
xzx

rxyðx; bÞ ¼ 0

ryðx; bÞ ¼ 0

8<
: ð3:33Þ
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Then considering the symmetry about the y-axis

exðx; yÞ ¼ exð�x; yÞ
eyðx; yÞ ¼ eyð�x; yÞ
cxyðx; yÞ ¼ �cxyð�x; yÞ

ð3:34Þ

Integrating Eq. (3.34) and imposing the fixed displacements and rotation at the center of the cells, we obtain

uðx; yÞ ¼ �uð�x; yÞ
vðx; yÞ ¼ vð�x; yÞ

ð3:35Þ

Thus,

uð0; yÞ ¼ 0 ð3:36Þ
Using Eq. (3.35a), Eq. (3.25a) reduces to

uða; yÞ ¼ �uð�a; yÞ ¼ �aj�
xzy ð3:37Þ

From Eq. (3.34),

rxðx; yÞ ¼ rxð�x; yÞ
ryðx; yÞ ¼ ryð�x; yÞ
rxyðx; yÞ ¼ �rxyð�x; yÞ

ð3:38Þ

Therefore,

rxyð0; yÞ ¼ 0 ð3:39Þ
Using Eqs. (3.38c) and (3.26b),

rxyða; yÞ ¼ 0 ð3:40Þ
From Eqs. (3.40), (3.26b) and (3.37), we obtain

ovða; yÞ
ox

¼ � ovða; yÞ
ox

¼ aj�
xz ð3:41Þ

Thus, the overall problem can be modeled by a quarter of the region with Eq. (3.33) and the following

conditions

x ¼ 0
uð0; yÞ ¼ 0

rxyð0; yÞ ¼ 0

�
; x ¼ a

uða; yÞ ¼ �aj�
xzy

rxyða; yÞ ¼ 0

�
ð3:42Þ

Using Gauss theorem together with Eqs. (3.25), (3.28) and (3.35) leads to

�eex ¼ 0; �eey ¼ 0; �ccxy ¼ 0; �jjy ¼ 0 ð3:43Þ

The above equation demonstrates the pure bending state under the constraints Eq. (3.42).

Further using Gauss theorem with Eqs. (3.25) and (3.41) yields

�jjxz ¼ j�
xz ð3:44Þ

The average couple stress is obtained as

�llxz ¼
1

2b

Z b

�b
yrx dy ð3:45Þ
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The modulus of curvature is defined as

�llxz ¼ B11j
�
xz ð3:46Þ

Similarly, by applying the bending deformation along y ¼ �b with a vertical strip of cells, we have

�llyz ¼ B22j
�
yz ð3:47Þ

where B22 ¼ B11. This approach will always lead to B12 ¼ 0.

The above boundary value problem can be solved by finite element method. In the following, another

method using a least squares method by Hulbert and Rybicki (1971) is examined. The use of boundary

collocation method will serve two purposes: (1) to compare the solutions with those obtained from finite

element method, (2) to determine the bending moduli under the applied loading conditions.

An elastic approach is used to solve this problem. Referring to a polar coordinate system, the basic field

equations for the plane strain problems are:

Strain–displacement relations:

er ¼
our

or
; eh ¼

1

r
ouh

oh
þ ur

r
; crh ¼

1

r
our

oh
þ ouh

or
� uh

r
ð3:48Þ

Constitutive equations of isotropic materials:

er ¼
1

E0 ðrr � m0rhÞ; eh ¼
1

E0 ðrh � m0rrÞ; crh ¼
1

G0 rrh ð3:49Þ

where E0 ¼ E
1�m2, m0 ¼ m

1�m.

Equilibrium equations:

orr

or
þ 1

r
orrh

oh
þ rr � rh

r
¼ 0

orrh

or
þ 1

r
orh

oh
þ 2rrh

r
¼ 0

ð3:50Þ

Introducing the Airy stress function U, and expressing stresses as

rr ¼
1

r
oU
or

�
þ 1

r
o2U

oh2

�
; rh ¼

o2U
or2

; rrh ¼ � o

or
1

r
oU
oh

� �
ð3:51Þ

the equilibrium equations are automatically satisfied.

For the doubly connected matrix region with symmetry along the y-axis, the stress function in the matrix

can be assumed as

UðmÞ ¼ bðmÞ
1 r3

�
þ aðmÞ

�1 r
�1
�
sin h þ

XN
n¼2

aðmÞ
n rn

�
þ aðmÞ

�n r
�n þ bðmÞ

n rnþ2 þ bðmÞ
�n r

�nþ2
�
sin nh ð3:52Þ

For the simply connected fiber region symmetrical about the y-axis, the stress function is expressed by

UðfÞ ¼ bðfÞ1 r3 sin h þ
XN
n¼2

aðfÞn rn
�

þ bðfÞn rnþ2
�
sin nh ð3:53Þ

In the above Eqs. (3.52) and (3.53), the superscripts f and m in the bracket denote the fiber and matrix

regions respectively. Note that in order to solve the bending deformation along the x ¼ �a, the odd sine
terms in Eq. (3.52) and (3.53) are chosen so that the anti-symmetric condition at h ¼ 0 and the symmetric

condition at h ¼ p=2 are fulfilled.
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With the series chosen which exactly satisfies symmetrical conditions along the y-axis and anti-symmetric

conditions on x-axes, there remains in the problem the necessity of satisfying the following prescribed

surface conditions and fiber–matrix interface conditions for the rectangular cell

uðmÞða; yÞ ¼ �aj�
xzy ð3:54Þ

uðmÞðx; bÞ ¼ �bj�
xzx ð3:55Þ

rðmÞ
r � rðfÞ

r ¼ 0; rðmÞ
rh � rðfÞ

rh ¼ 0; at r ¼ R ð3:56Þ

uðmÞ
r � uðfÞr ¼ 0; uðmÞ

h � uðfÞh ¼ 0; at r ¼ R ð3:57Þ

rðmÞ
xx ða; yÞ ¼ rðmÞ

xy ðx; bÞ ¼ 0 ð3:58Þ

where R is the fiber radius and

u ¼ ur cos h � uh sin h

rxx ¼ rrr cos
2 h þ rhh sin

2 h � 2rrh sin h cos h

ryy ¼ rrr sin
2 h þ rhh cos

2 h þ 2rrh sin h cos h

rxy ¼ ðrrr � rhhÞ sin h cos h þ rrhðcos2 h � sin2 hÞ
A least squares method is utilized to evaluate the coefficients of the truncated series terms so that the

stress and displacement fields can be obtained. The method is carried out in the following steps:

(1) select a set of discrete points on the cell surface (x ¼ a and y ¼ b) and the fiber–matrix interface;

(2) apply the prescribed boundary conditions on the cell surface and interface continuity conditions,

Eqs. (3.54)–(3.58), to these discrete points;

(3) solve the resulting set of simultaneous equations for the coefficients.

The total number of discrete points is chosen so that the number of equations, m, is greater than the
number of unknowns, n. The solutions can be obtained by solving the overdetermined set of equations in

the least squares sense.

For the above displacement boundary conditions, after solving the equations the couple stress is deter-

mined by

�llxz ¼
1

b

Z b

0

yrxx dy ð3:59Þ

Then the bending modulus B11 is determined as

�llxz ¼ B11j
�
xz ð3:60Þ

In contrast to the displacement boundary conditions used in the determination of the moduli, the applied

loading on the surface of the cell provides an alternative in determining the bending modulus. A simple

linear function of the normal stress is applied at x ¼ a for the quarter of the cell as follows

rxxða; yÞ ¼ 3y=b2; rxyða; yÞ ¼ 0 ð3:61Þ

ryyðx; bÞ ¼ 0; rxyðx; bÞ ¼ 0 ð3:62Þ
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Using (3.61) and (3.62) and the interface continuity conditions (3.56) and (3.57) with the least squares

method, the series solutions can be obtained.

The couple stress is obtained as

�llxz ¼
1

b

Z b

0

yrxx dy ¼ 1 ð3:63Þ

The curvature can be obtained by

�jjxz ¼
1

2ab

Z b

0

ovða; yÞ
ox

dy � uða; bÞ
2ab

ð3:64Þ

where

ov
ox

¼ cos h sin h
our

or

�
þ cos h

ouh

or

�
� sin h

r
our

oh
sin h

�
þ ouh

oh
cos h þ ur cos h � uh sin h

�

where v ¼ ur sin h þ uh cos h.
The bending modulus is defined as

B11 ¼
1

�jjxz

4. Results and discussion

The application of classical elasticity theory and micro-polar theory in predicting the micro-stress fields

from macro-stress fields near the high macro-gradient zone of the free edge problem in composite laminates

will be presented in detail. The composite consist of Sigma 1240 (silicon carbide) fibers (Young�s modulus:

325 GPa and Poisson�s ratio: 0.15) and epoxy matrix (Young�s modulus: 3.45 GPa and Poisson� ratio: 0.35).
Two composite laminates are used to critically examine and compare the stress solutions from these two

theories with ‘‘exact’’ solutions. 30.7% and 61.4% Vf fibrous unit cells are utilized to construct two com-

posite laminate models. The homogenization method to compute the effective moduli for the two theories

of these composite cells has been derived in Yuan et al. (1997) and Section 3. The obtained effective elastic

moduli are listed in Table 1(panels a and b). The bending moduli are also obtained from the displacement

and stress boundary conditions utilizing the boundary least squares method (Hulbert and Rybicki, 1971) as

well as the finite element method as discussed in Section 3. By applying the displacement and stress

boundary conditions, a larger discrepancy of B as indicated in Fig. 6 is evident when a higher fiber volume
fraction is applied. These moduli based on displacement boundary conditions are then employed in the

analysis of the composite laminates.

Table 1

Effective moduli of 30.7% Vf fibrous cell (panel a) and 61.4% Vf fibrous cell (panel b)

Panel a

EL ¼ 102:11 GPa, ET ¼ EZ ¼ 7:27 GPa, mLT ¼ mLZ ¼ 0:277, mTZ ¼ 0:440, GLT ¼ GLZ ¼ 2:39 GPa, GTZ ¼ 1:99 GPa

The micro-polar shear and bending moduli are shown in the constitutive relations

�rrxy

�rryx

� �
¼ 22:51 �18:53

�18:53 22:51

� �
�eexy
�eeyx

� �
GPa,

�llxz

�llyz

� �
¼ 9:53 0

0 9:53

� �
�jjxz

�jjyz

� �
N/m

Panel b

EL ¼ 198:99 GPa, ET ¼ EZ ¼ 14:95 GPa, mLT ¼ mLZ ¼ 0:172, mTZ ¼ 0:535, GLT ¼ GLZ ¼ 5:74 GPa, GTZ ¼ 1:87 GPa

The micro-polar shear and bending moduli are shown in the constitutive relations

�rrxy

�rryx

� �
¼ 28:57 �21:12

�21:12 28:57

� �
�eexy
�eeyx

� �
GPa,

�llxz

�llyz

� �
¼ 17:75 0

0 17:75

� �
�jjxz

�jjyz

� �
N/m
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The MM which models the fibers explicitly in the finite element method will serve as ‘‘exact’’ solutions

for the laminates within the bounds of the FEM analysis. The stress fields based on EM from classical

elasticity theory and MP from micro-polar theory are evaluated and compared with the ‘‘exact’’ solutions.

Note that in these two composites the ply interfaces are truly matrix material, but the effective modulus
representation (EM and MP models) leads to artificial results––caused by the ‘‘discontinuity’’ in moduli at

the interface in the model. The ‘‘layered’’ composites create a high macro-stress gradient near the free edge.

The only way to improve the results is to represent the micro-structure explicitly (MM model). Also in the

MP model, the couple stress traction vector must vanish on the interface with a classical epoxy matrix.

Special attention is focused on the normal stress along artificial interface, y ¼ h, and micro-stress along

fiber/matrix interface of the critical cell near the high macro-stress gradient region. These micro-stresses are

crucial since failure of the composites most likely will initiate along the fiber/matrix interface. It has been

demonstrated that the effective modulus model (EM) is not able to capture these micro-stresses accurately
(Pagano and Yuan, 2000). The proposed micro-polar theory (MP), which includes a couple stress and an

independent rotation in addition to the conventional stresses and displacements of elasticity theory, res-

pectively, may predict these micro-stresses precisely.

4.1. Stress fields near the free edge

The use of micro-polar theory aims at improving prediction of the stress fields near the free edge in the

analysis of composite laminates. The region near the free edge is extremely critical due to its steep macro-

stress gradient and its physical significance with regard to the failure initiation. Two laminates having the

identical macro-geometry and constituents as seen in Figs. 2 and 3 of two-row composite lamina and yet

one with 30.7% Vf and the other with 61.4% Vf , under ez ¼ 0:2% are used for illustration and discussed in

the order of increasing stress singularity. The first case, as seen in Fig. 2, is a laminate system that has stress
singularity d ¼ �0:0370642 calculated from the classical elasticity theory. The stress singularity is obtained

Fig. 6. Bending modulus of 30.7% and 61.4% fiber volume fraction (Vf ).
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by satisfying the ‘‘interfacial’’ continuity at y ¼ h and traction free conditions along the free edge, x ¼ 4h.
The second case as shown in Fig. 3 with higher fiber volume fraction has stress singularity d ¼ �0:1188763.
Emphasis of the study focuses on the stress fields on planes y ¼ 0, y ¼ h, x ¼ 3h, x ¼ 4h and particularly

along the boundary of a unit cell near the free edge where the maximum normal stress occurs; this cell is
called a ‘‘critical’’ cell. The stress fields from MM, EM and MP models along the boundary of the critical

cell are discussed.

The effects of fiber volume fraction on the stress fields are investigated first. As observed in Fig. 7, the

MM normal stress at y ¼ h oscillates due to presence of the fibers. For the case of 30.7% Vf , the EM model

gives a distortion of physics since the singular stress is tensile at the edge (x ¼ 4h), while the MM (actual)

stress is compressive. As expected, when the fiber volume fraction increases, the magnitude of micro-stress

increases and macro-stress gradient near the free edge is greater. At the center line x ¼ 0, the EM stress for

61.4% Vf case approach a plateau non-zero value which is greater than that of 30.7% Vf case. The non-zero
value of ry at the center line is manifested by the balance the force and moment along the interface y ¼ h.
For wider laminates, it is expected that ry should approach zero which is consistent with the classical

lamination theory.

The normal stress distribution of the first case at y ¼ 0 is shown in Fig. 8. The exact average of the stress

using MM model generally lies close to the EM and MP curves, except the nearest cell to the free edge. In

Fig. 8, MM, EM and MP curves are very close to each other. However, results from the theories shown Fig.

9 give totally different trends at the artificial interface y ¼ h in comparison with those at the plane y ¼ 0. In

addition, the normal stress distribution of the MP model is slightly different from that of the EM model,
especially near the free edge. The comparison of Figs. 8 and 9 suggests that the influence of a particular

fiber is only felt within a region of dimension h (cell size), which illustrates ‘‘micro-zone of influence’’ in the

lamina. The presence of the free edge creates high macro-stress gradient within each laminate. To illustrate

this point, the EM and MP models in Fig. 10 show high ry gradient at y ¼ 160 lm where an artificial mate-

rial discontinuity occurs. The implementation of micro-polar theory in the analysis does not significantly

Fig. 7. Effect of volume fraction on ry of composite laminate.
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change the stress pattern. Another important observation is the location of the maximum tensile stress in

the laminate as demonstrated in Fig. 10. The MM maximum tensile stress falls at y ¼ ð3=2Þh (240 lm)

Fig. 8. Case 1: ry distribution at y ¼ 0.

Fig. 9. Case 1: ry distribution at y ¼ h.
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whereas the MP and EM maximum tensile stresses take place along the artificial interface. The cell where

maximum EM and MP tensile stress exists is identified is the central point of the investigation due to the

possible location of failure initiation.

From the results demonstrated in Figs. 8–10, problems are encountered in interpreting regions of steep

gradients in the effective modulus solution at y ¼ h and the region along the free edge, x ¼ 4h. The

discontinuity of elastic moduli in the effective modulus model produces a singularity along planes x ¼ 4h
and y ¼ h. Obviously, the singularity is an artifact in this case since no material discontinuity exists along
the plane y ¼ h in the actual configuration. This fact forces us to examine the meaning of such a wildly

variable effective modulus stress field and to question the legitimacy of characterizing the behavior in this

region by an average state of stress in the study of a physical phenomenon. In Fig. 9, ry is tensile for

both EM and MP models hence these models would be expected to predict free edge failure at the in-

terface y ¼ h. On the other hand, ry of MM model is compressive which means the laminate is not

susceptible to free edge failure in the neighborhood of (4h, h). The inconsistency in predicting the normal

stress implies that the effective moduli approach needs careful interpretation with regard to the prediction

of physical behavior in the present class of problems, as well as in other problems in which a stress
singularity exists.

In order to assess if the effective modulus theory represents reasonable stress field predictions of the

micro-mechanics model, the comparison of the resultant stresses around the boundary of the critical cell is

evaluated and listed in Table 2. A strong indication of the improved stress predictions from the MP model

is demonstrated. Notice that the resultant shear stress is anti-symmetric, hence, the unit cell is now sub-

jected to both resultant stresses and moments. The total moment from MP model is computed by the

combination of moment resulting from the normal stresses and couple stress of micro-polar theory. Overall,

good agreement is achieved between the MM and MP models. While the EM and MP models may produce
irregularity in the stress field prediction, the MP resultant stresses compare quite well with those given by

the ‘‘exact’’ analysis (MM model). After evaluating the boundary of the critical cell, one can conclude that

Fig. 10. Case 1: ry distribution at x ¼ 4h.
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Table 2

Case 1: Resultant stresses on the �critical� cell

MM (micro-mechanics model)

EM (effective modulus model)

MP (micro-polar model)
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the micro-polar theory significantly improves the prediction of resultant stresses near the free edge of the

composite laminate.
A similar analysis is applied to composite laminate consisting of 61.4% Vf cells. It can be observed in Fig.

11 that the magnitude of the normal stress, in general, increases as the fiber volume fraction increases. The

MP model also gives a similar high macro-stress gradient as the EM model as indicated in Fig. 12. In

addition, as in the first case, EM model using 61.4% Vf cells fails to provide accurate predictions of the

resultant stress on the critical cell as clearly seen in Table 3. However, the MP model successfully predicts

these stresses, although it is not as accurate as the results in low fiber volume fraction case, such as in the

first case.

In summary, the complex behavior of the composite laminates, particularly the physical meaning of the
normal stresses is very difficult to interpret. From the ply level, EM stresses can be physically deceptive, i.e.,

can lead to unreasonable prediction of failure initiation. Failure, here, is interpreted as a crack to initiate at

the free edge and then propagate into the matrix region. However, in the micro-level, the stresses along the

fiber/matrix interface, so called micro-stress, are expected to dominate laminate failure. Thus, the need to

implement micro-polar theory in the micro-stress prediction of ‘‘critical’’ cell is more apparent to confi-

dently determine the failure criteria of composite laminates. The micro-stresses in all cases considered above

are examined along fiber/matrix interface in the following section.

4.2. Micro-stresses at fiber/matrix interface

Micro-mechanical stresses affect the strength of fiber reinforced composites. In addition, initial cracking in

composites usually occurs in the matrix or the interface between fiber and matrix. Therefore, the most im-

portant part in the design analysis of composite lamina, especially in the failure analysis of composites is the
stress distribution along fiber/matrix interface. For the present boundary value problem, the implementation

Fig. 11. Case 2: ry distribution at y ¼ h.
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of micro-polar theory into composite laminate mechanics appears to be beneficial in predicting these micro-

stress. To demonstrate this point, nodal forces attained from the boundary of the critical cell are applied to a

unit cell. For MPmodel, in addition to the direct nodal forces, the nodal force due to the couple stress is also

implemented to the computation scheme around the boundary of the critical cell. Themicro-stress fromMM,

EM and MP models are then compared.

The micro-stress prediction of the first case obtained from traction boundary conditions are plotted in

Fig. 13(a)–(d). The solid lines represent MM micro-stress. In the solid curves of Fig. 13(a) and (d), the

distribution of rr and rrh, which, of course are equal in exact elasticity solution but are natural boundary
conditions in the FEM. Hence, the proximity of the results (the solid lines are actually two curves) is a sign

of the convergence of the FEM solution. In Fig. 13(c), the matrix stress distribution of rh is displayed. The

micro-stress rh in the fiber are also presented in Fig. 13(b). The other curves in Fig. 13(a)–(d) represent EM

and MP models. In Fig. 13(a)–(d), the EM and MP results are plotted in open diamond and solid circles,

respectively. The micro-stress from traction boundary conditions calculated from EM and MP models

along the three critical cell boundaries, yo ¼ h=2;�h=2 and xo ¼ �h=2, and traction free boundary at

xo ¼ h=2, where xo, yo are the center coordinate of the critical fiber, are displayed and compared with the

exact MM model. It is shown in Fig. 13(a)–(d) that the micro-stress from the MP model is in very good
agreement with the ‘‘exact’’ micro-stress. Fig. 14 shows that micro-polar theory is able to improve greatly

the prediction of strain distribution, ey , at the free edge of the critical cell.

Lastly, the case with a higher stress singularity model is examined by utilizing 61.4% Vf fibrous cells. The
micro-stress obtained from traction boundary conditions applied at the critical cell boundary are plotted. It

is observed in Fig. 15(a)–(d), using higher fiber volume fraction, the EM solutions do not provide accurate

results in micro-stress prediction. However, MP solutions produce more accurate micro-stress prediction as

seen in Fig. 15(a)–(d). MP model also improves the strain, ey , distribution at the free edge, as seen in Fig. 16.

Fig. 12. Case 2: ry distribution at x ¼ 4h.
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Table 3

Case 2: Resultant stresses on the �critical� cell

MM (micro-mechanics model)

EM (effective modulus model)

MP (micro-polar model)
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In conclusion, the micro-stress would be expected to dominate the initial failure process due to the maxi-

mum stress location in the interfacial zones. Consequently, it is critical to be able to predict the micro-stress

along fiber/matrix interface, and the micro-polar theory clearly shows much better prediction of these
stresses.

5. Conclusions

The micro-polar homogenization is used to predict the micro-stress distribution in the region of high
macro-stress gradient of the composite laminates. The higher-order elasticity theory is based on the micro-

Fig. 13. (a) Case 1: rr of the critical cell along the fiber/matrix interface. (b) Case 1: rh in the fiber of the critical cell along the fiber/

matrix interface. (c) Case 1: rh in the matrix of the critical cell along the fiber/matrix interface. (d) Case 1: rrh of the critical cell along

the fiber/matrix interface.
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polar theory developed by Eringen (1966). The in-plane shear moduli and the bending moduli are deter-

mined from a nine-cell model and a long strip of unit cells respectively. In order to substantiate its ap-

plicability, two cases of laminates with free edge under uniform axial strain have been studied. The

following conclusions may be drawn:

(1) The micro-polar homogenization method is introduced to determine the effective moduli of com-

posite materials by means of the finite element method. In addition to the classical effective moduli, the

micro-polar shear and bending moduli are utilized to introduce the cell size factor that exists in micro-polar

theory.
(2) In the classical elasticity theory, the fiber volume fraction and the cell size affect the stress response of

the composite laminate. First, in the class of problems studied there is inconsistency in predicting the

normal stress, especially at the free edge when 30.7% and 61.4% Vf cell laminates are employed. For the case

of 30.7% Vf , the EM model gives a distortion of physics since the singular stress is tensile at the free edge

while the MM stress is compressive. Second, a strong indication of a �micro-zone of influence� around the

boundary of the cell near the free edge is observed. The term �micro-zone of influence� implies that the stress

and strain distributions around the boundary of the cell vary with the cell size (fiber size). A �Micro-zone of

influence� can also be interpreted as the influence of a particular fiber is only felt within a region of fiber size
(dimension h). Due to the importance of the cell size on predicting the elastic response of composite

laminates, the micro-polar theory which takes into account the cell size or dimension is studied.

(3) Similar to the classical elasticity theory, the application of micro-polar theory to composite laminate

introduces artificial interfaces leading to severe macro-stress gradient, which can distort the physics of the

problem by reversing the sign of the normal stress near the free edge region. The inconsistency in predicting

the normal stress at the artificial interface implies that the effective moduli approach, the classical and

micro-polar elasticity theory, needs careful interpretation with regard to the prediction of physical behavior

in the present problem, as well as in other problems in which effective singularities exist. The advantage of
the micro-polar theory can be clearly seen by evaluating the resultant stresses on the boundary of the

Fig. 14. Case 1: ey of the critical cell along xo ¼ h=2.
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critical cell, near the free edge of the composite laminate. It is clear that the classical effective modulus

theory (EM model) is not able to predict these stresses, while the micro-polar theory produces accurate

prediction of the resultant stresses.
(4) The micro-stress predictions near the steep macro-stress gradient using micro-polar theory from the

ply level for all cases are very promising although the micro-polar theory only considers the gradient of the

normal stress (couple stress) but not shear stress. These microstresses are responsible for the failure initi-

ation process in composites since the composite failure always originates from the micro-scale. In general,

the micro-polar theory improves the micro-stress predictions using both displacement and traction

boundary conditions imposed on the critical cell boundaries. However, the use of displacement boundary

conditions in the laminate with higher fiber volume fraction, such as in the second case, is not able to

(a) (b)

(d)(c)

Fig. 15. (a) Case 2: rr of the critical cell along the fiber/matrix interface. (b) Case 2: rh in the fiber of the critical cell along the fiber/

matrix interface. (c) Case 2: rh in the matrix of the critical cell along the fiber/matrix interface. (d) Case 2: rrh of the critical cell along

the fiber/matrix interface.
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capture or even provide similar micro-stress trends as in the ‘‘exact’’ solutions (MM model). Note that the

independent rotation has not been taken into account in the displacement boundary conditions along the

cell boundary. It is hopeful that the inclusion of this rotation in the boundary condition will further im-
prove the micro-stress prediction.

(5) The micro-polar theory may be used to establish realistic failure criteria for composite laminates in

the presence of stress concentrations and steep stress gradients at the micro-mechanical scale.
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Appendix A. Finite element method for micro-polar elasticity

The principle of virtual work and the variational principle of total potential energy for micro-polar

elastic materials will be derived in this section. A general three-dimensional finite element method is for-

mulated. A finite element scheme is examined under two-dimensional general plane deformation subjected

to uniaxial strain. An example is shown for the infinite strip under in-plane shear for which an exact so-

lution is known. Solution of the example is compared with those from the finite element method to show the
accuracy of this method.

Fig. 16. Case 2: ey of the critical cell along xo ¼ h=2.
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A.1. Principle of virtual work and variational formulation of micro-polar elasticity

The micro-polar theory incorporates independent micro-rotations as well as the translational dis-

placements assumed in classical elasticity. The principle of virtual work can be obtained from the equations
of equilibrium and vice versa. Let a solid body in V be in static equilibrium under specified body forces,

body couples, and surface boundary conditions. The surface boundary of the body S can be divided into

two parts from the viewpoint of the boundary conditions. The part Sr over which traction boundary

conditions are prescribed in terms of external forces and couples and the part Su over which geometrical

boundary conditions are prescribed in terms of displacements and micro-rotations. Thus, S ¼ Sr þ Su.

Here, the arbitrary set of the virtual displacements is chosen such that the geometrical boundary conditions

on Su satisfy the following equations:

du ¼ ½du; dv; dw
T ¼ 0 and d/ ¼ ½d/x; d/y ; d/z

T ¼ 0; on Su ðA:1Þ

The stress components are denoted by rx; ry ; . . . ; rxy and couple-stresses by lxx; lyy ; . . . ; lxy . Equilibrium

equations in the absence of body forces and body couples at all points in V are expressed by:

rji;j ¼ 0; lji;j þ eiklrkl ¼ 0 ðA:2a;bÞ

The traction boundary conditions are given by

tðnÞi ¼ �ttðnÞi ; lðnÞ
i ¼ �llðnÞ

i on Sr ðA:3a;bÞ

Multiplying Eq. (A.2a,b) by the arbitrary virtual displacements du and d/, respectively and integrating the

relation over V , multiplying Eq. (A.3a,b) by the virtual displacements and integrating over Sr, and then

applying Gauss� theorem the sum of the two integrals leads toZ
V
½rjidui;j þ ljid/i;j � eiklrkld/i
dV �

Z
Sr

ð�ttðnÞi dui þ �llðnÞ
i d/iÞdS ¼ 0 ðA:4Þ

By introducing the micro-polar strain tensor

eij ¼ uj;i � eijk/k ðA:5Þ

Eq. (A.4) can be rewritten asZ
V
ðrijdeij þ ljid/i;jÞdV �

Z
Sr

ð�ttðnÞi dui þ �llðnÞ
i d/iÞdS ¼ 0 ðA:6Þ

The integrals can be recognized as work expressions. The first integral corresponds to the negative of the

internal virtual work and the second integral is the virtual external work. Hence

�dWi � dWe ¼ 0 ðA:7Þ

This expression can be expressed by

dðWi þ WeÞ ¼ 0 or dW ¼ 0 ðA:8Þ

with

W ¼ Wi þ We

Eqs. (A.6) and (A.7) or (A.8) are the expressions for the principle of virtual work. The principle holds for

arbitrary infinitesimal virtual displacements satisfying the prescribed geometrical boundary conditions.
For dissipation-free materials and conservative loads, we assume the existence of a positive definite

strain energy density U0ðeij; jijÞ such that
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rij ¼
oU0

oeij
and lij ¼

oU0

ojij
ðA:9Þ

where

jij ¼ /j;i ðA:10Þ

Then, the first term of Eq. (A.6) is expressed byZ
V

oU0

oeij
deij

�
þ oU0

ojij
djij

�
dV ¼ d

Z
V
U0 dV ¼ dU ðA:11Þ

The virtual work of the external loads may be expressed in terms of the variation of the load potential as

dWe ¼
Z
Sr

ð�ttðnÞi dui þ �llðnÞ
i d/iÞdS ¼ d

Z
Sr

ð�ttðnÞi ui þ �llðnÞ
i /iÞdS ¼ �dV ðA:12Þ

Eq. (A.6) can be written as

dU þ dV ¼ 0 ðA:13Þ

Total potential energy is defined as

P ¼ U þ V ðA:14Þ

Now, Eq. (A.12) can be expressed as

dP ¼ 0 ðA:15Þ
Eq. (A.15) is the principle of total potential energy of micro-polar elasticity in which strain energy and the

potential of the external load are given by Eqs. (A.11) and (A.12), respectively.

A.2. FEM under generalized plane deformation

For generalized plane deformation problem to be discussed later where the displacements and rotation

are expressed by

uðx; y; zÞ ¼ Uðx; yÞ
vðx; y; zÞ ¼ V ðx; yÞ
wðx; y; zÞ ¼ e0z

/zðx; y; zÞ ¼ /zðx; yÞ

ðA:16Þ

and stresses are functions of x and y only, the three-dimensional constitutive equations can be significantly

simplified.

rxx

ryy

rxy

ryx

lxz

lyz

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

¼

C11 C12 0 0 0 0

C21 C22 0 0 0 0

0 0 G11 G12 0 0

0 0 G12 G22 0 0

0 0 0 0 B11 B12

0 0 0 0 B12 B22

2
6666664

3
7777775

exx
eyy
exy
eyx
jxz

jyz

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

þ

C13

C23

0

0

0

0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

e0 ðA:17Þ
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or

r ¼ De þ r0

r ¼ ½rxx; ryy ; rxy ; ryx; lxz; lyz

T

e ¼ ½exx; eyy ; exy ; eyx; jxy ; jyx
T

u ¼ ½u; v;/z

T

ðA:18Þ

The total potential energy can be expressed by

P ¼ 1

2

Z
V

eTDedV þ 1

2

Z
V

rT
0 edV ðA:19Þ

The strains are given by

e ¼

exx
eyy
exy
eyx
jxz

jyz

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

o

ox
0 0

0
o

oy
0

0
o

ox
�1

o

oy
0 1

0 0
o

ox

0
o

oy
0

2
666666666666666664

3
777777777777777775

u
v
/z

8<
:

9=
; ðA:20Þ

In a finite element representation the displacements and local rotations may be expressed by introducing

appropriate shape functions N such that

u ¼ Nue ðA:21Þ

where ue are nodal field variable vectors.

Applying Eq. (A.21) to (A.20) yields

e ¼

exx
eyy
exy
eyx
jxz

jyz

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

oN
ox

0 0

0
oN
oy

0

0
oN
ox

�1

oN
oy

0 1

0 0
oN
ox

0
oN
oy

0

2
666666666666666664

3
777777777777777775

ue

ve

/e
z

8<
:

9=
; ¼ Bue ðA:22Þ

Eq. (A.19) becomes:

P ¼ 1

2
ueT

Z
V
ðBTDBÞdV

� �
ue þ 1

2

Z
V

rT
0BdV ue ðA:23Þ

Taking the first variation of Eq. (A.23) with respect to ue and a general matrix formulation can be written
as:
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keue ¼ f e ðA:24Þ
with

ke ¼
Z
V
BTDBdV ðA:25Þ

f e ¼ �
Z
V

rT
0BdV ðA:26Þ

A.3. Numerical example––simple shear of infinite layer

Analytical solutions of an infinite layer under simple shear for a linear isotropic micro-polar solid

originally derived by Schaefer (1962) are briefly rederived in this section. The finite element results for this

boundary value problem will then be compared with the analytical results to demonstrate the accuracy of

the numerical modeling. For an infinite layer in the x-direction under simple shear, the displacements u, /z,

are only a function of y and so do the stress and couple, rxy , lyz and v ¼ 0. The constitutive relation of a

linear isotropic micro-polar solid in plane strain is given by

rxx

ryy

rxy

ryx

lxz

lyz

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

k þ 2l k 0 0 0 0

k k þ 2l 0 0 0 0
0 0 l þ j l � j 0 0

0 0 l � j l þ j 0 0

0 0 0 0 c 0

0 0 0 0 0 c

2
6666664

3
7777775

exx
eyy
exy
eyx
jxz

jyz

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ðA:27Þ

For this boundary value problem, the constitutive relation can be simply reduced to:

rxy ¼ ðl þ jÞexy þ ðl � jÞeyx
ryx ¼ ðl � jÞexy þ ðl þ jÞeyx

ðA:28Þ

lyz ¼ cjyz ðA:29Þ
The kinematics relation gives:

exx ¼ eyy ¼ 0; exy ¼ �/z; eyx ¼
du
dy

þ /z; jyz ¼
d/z

dy
ðA:30Þ

The equations of equilibrium can be reduced to:

dryx

dy
¼ 0 ðA:31Þ

dlyz

dy
þ rxy � ryx ¼ 0 ðA:32Þ

From Eq. (A.31), ryx is a constant equal to the applied shear stress on the top and bottom surfaces. Apply-

ing Eqs. (A.28)–(A.30) to Eqs. (A.31) and (A.32) and rearranging them, we obtain:

c
4j

d2/z

dy2
� /z ¼

1

2

du
dy

ðA:33Þ

cðl þ jÞ
2j

d2/z

dy2
� 2l/z ¼ ryx ðA:34Þ
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Further by applying boundary conditions, /zð�h=2Þ ¼ 0, we can solve for /z in the layer from Eq. (A.34)

/z

ryx
¼ � 1

2l
1

�
� cosh ny
cosh nh=2

�
ðA:35Þ

where n ¼ 2
ffiffiffiffiffiffiffiffiffiffi

lj
cðlþjÞ

q
.

Substituting (A.35) into (A.29), (A.30) and (A.32), then the ratio of the shear stresses can be expressed in
the following:

rxy

ryx
¼ 1� 2j

l þ j
cosh ny

cosh nh=2
ðA:36Þ

The couple stress expression can be obtained using (A.29), (A.30) and (A.35).

lyz

ryx
¼ 1

2l
n

sinh ny
cosh nh=2

The u displacement can be obtained by substituting (A.35) to (A.33) and taking the integration:

u
ryx

¼ 1

l
y

�
� 2l þ j

l þ j

� �
1

n
sinh ny

cosh nh=2

�
ðA:37Þ

For numerical illustration, the geometry and relevant material properties are listed:

h ¼ 1 m; j ¼ 2l ¼ 2 Pa; c ¼ 1 N ðA:38Þ

A finite element program based on linear micro-polar theory is tested by applying the equivalent dis-

placement u from Eq. (A.37) at y ¼ �h=2 with the given boundary conditions v ¼ /z ¼ 0 on the surfaces of

the infinite layer and utilizing the micro-polar moduli in Eq. (A.38). A two-dimensional analysis with eight-

Fig. 17. Couple stress distribution through the thickness of an infinite layer under simple shear.
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node isoparametric finite elements is used in the modeling. For example, it is clear from Fig. 17 that finite

element results for distributions of lyz agrees well with the analytical results. Thus, the finite element micro-

polar program can be confidently employed.
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